308 research outputs found

    Formulae for partial widths derived from the Lindblad equation

    Get PDF
    A method for calculating partial widths of auto-ionizing states is proposed. It combines either a complex absorbing potential or exterior complex scaling with the Lindblad equation. The corresponding classical rate equations are reproduced, and the trace conservation inherent in the Lindblad equation ensures that the partial widths sums up to the total width of the initial auto-ionizing state

    Finite permutation groups of rank 3

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46298/1/209_2005_Article_BF01111335.pd

    Collineation group as a subgroup of the symmetric group

    Full text link
    Let Ψ\Psi be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension 3\ge 3 over a field. Let HH be a closed (in the pointwise convergence topology) subgroup of the permutation group SΨ\mathfrak{S}_{\Psi} of the set Ψ\Psi. Suppose that HH contains the projective group and an arbitrary self-bijection of Ψ\Psi transforming a triple of collinear points to a non-collinear triple. It is well-known from \cite{KantorMcDonough} that if Ψ\Psi is finite then HH contains the alternating subgroup AΨ\mathfrak{A}_{\Psi} of SΨ\mathfrak{S}_{\Psi}. We show in Theorem \ref{density} below that H=SΨH=\mathfrak{S}_{\Psi}, if Ψ\Psi is infinite.Comment: 9 page

    Webs of Lagrangian Tori in Projective Symplectic Manifolds

    Full text link
    For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperk\"ahler manifold is a fiber of an almost holomorphic Lagrangian fibration, giving an affirmative answer to a question of Beauville's. Our proof employs two different tools: the theory of action-angle variables for algebraically completely integrable Hamiltonian systems and Wielandt's theory of subnormal subgroups.Comment: 18 pages, minor latex problem fixe

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur

    Bicrossed products for finite groups

    Full text link
    We investigate one question regarding bicrossed products of finite groups which we believe has the potential of being approachable for other classes of algebraic objects (algebras, Hopf algebras). The problem is to classify the groups that can be written as bicrossed products between groups of fixed isomorphism types. The groups obtained as bicrossed products of two finite cyclic groups, one being of prime order, are described.Comment: Final version: to appear in Algebras and Representation Theor

    Ordering of Energy Levels in Heisenberg Models and Applications

    Full text link
    In a recent paper we conjectured that for ferromagnetic Heisenberg models the smallest eigenvalues in the invariant subspaces of fixed total spin are monotone decreasing as a function of the total spin and called this property ferromagnetic ordering of energy levels (FOEL). We have proved this conjecture for the Heisenberg model with arbitrary spins and coupling constants on a chain. In this paper we give a pedagogical introduction to this result and also discuss some extensions and implications. The latter include the property that the relaxation time of symmetric simple exclusion processes on a graph for which FOEL can be proved, equals the relaxation time of a random walk on the same graph. This equality of relaxation times is known as Aldous' Conjecture.Comment: 20 pages, contribution for the proceedings of QMATH9, Giens, September 200
    corecore